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Abstract. Isotopic ratios are often utilised as proxies for ocean circulation and the marine carbon cycle. However, interpreting 

these records is non-trivial because they reflect a complex interplay between physical and biogeochemical processes. By 

directly simulating multiple isotopic tracer fields within numerical models, we can improve our understanding of the processes 

that control large-scale isotope distributions and interpolate the spatiotemporal gaps in both modern and palaeo datasets. We 10 

have added the stable isotope 13C to the ocean component of the FAMOUS coupled atmosphere-ocean General Circulation 

Model, which is a valuable tool for simulating complex feedbacks between different Earth System processes on decadal to 

multi-millennial timescales. We tested three different biological fractionation parameterisations to account for the uncertainty 

associated with equilibrium fractionation during photosynthesis and used sensitivity experiments to quantify the effects of 

fractionation during air-sea gas exchange and primary productivity on the simulated δ13CDIC distributions. Following a 10,000 15 

year pre-industrial spin-up, we simulated the Suess effect (the isotopic imprint of anthropogenic fossil fuel burning) to assess 

the performance of the model in replicating modern observations. Our implementation captures the large-scale structure and 

range of δ13CDIC observations in the surface ocean, but the simulated values are too high at all depths, which we infer is due to 

biases in the biological pump. In the first instance, the new 13C tracer will therefore be useful for recalibrating both the physical 

and biogeochemical components of FAMOUS.   20 
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1 Introduction 

Carbon isotopes are often used as proxies for ocean circulation and the marine carbon cycle. There are three naturally 

occurring carbon isotopes: the stable isotopes 12C (98.9 %) and 13C (1.1 %), and the radioactive isotope 14C (1.2×10-10 %), 

which is also known as radiocarbon (Key, 2001). The relative proportions of 12C, 13C and 14C in a given oceanic pool (e.g. 

dissolved inorganic carbon, DIC, or particulate organic carbon, POC) are controlled by ocean circulation and mixing, and mass 5 

dependent fractionation during biogeochemical processes such as air-sea gas exchange (Lynch-Stieglitz et al., 1995; Zhang et 

al., 1995), photosynthesis (e.g. Sackett et al., 1965; Rau et al., 1989; Hollander and McKenzie, 1991; Keller and Morel, 1999), 

and calcium carbonate formation (Emrich et al., 1970; Turner, 1982; Ziveri et al., 2003). This is typically reported in delta (δ) 

notation, which is the heavy to light isotope ratio (R) of a sample relative to a standard in per mil (‰) units ((Rsample / Rstandard 

- 1) × 1000; Stuiver and Polach, 1977). In this study we focus on δ13C, which is primarily used to track individual water masses 10 

(Curry and Oppo, 2005), study past changes in the carbon cycle (e.g. de la Fuente et al., 2017), and investigate changes in 

ocean circulation on glacial-interglacial timescales (e.g. Spero and Lea, 2002; Campos et al., 2017). It has also been used to 

constrain air-sea gas exchange rates (Gruber and Keeling, 2001) and to estimate the uptake of anthropogenic carbon by the 

global oceans (Quay et al., 1992, 2003). 

Oceanographic surveys conducted since the 1970s, such as the World Ocean Circulation Experiment (WOCE; Orsi 15 

and Whitworth III, 2005; Talley, 2007; Koltermann et al., 2011; Talley, 2013), and synthesis projects such as Carbon dioxide 

in the Atlantic Ocean (CARINA; Key et al., 2010), Pacific Ocean Interior Carbon (PACIFICA; Suzuki et al., 2013), and the 

Global Ocean Data Analysis Project (GLODAP; Key et al., 2004, 2015; Olsen et al., 2016), provide an indication of large-

scale carbon isotope distributions in the modern oceans. The two main drawbacks of these surveys are that they include 

relatively few measurements from the sub-surface ocean and that there were only a limited number of repeat measurements at 20 

fixed locations, which were often taken decades apart. These datasets are therefore insufficient for studying transient changes 

in carbon isotope distributions at sub-decadal resolution. 

Geological archives such as corals (e.g. Guilderson et al., 2013) and sediment cores (e.g. Oliver et al., 2010) are used 

to extend the record further back in time. However, interpreting isotopic ratios in geological archives is non-trivial because 

they result from a complex interplay between physical processes and biogeochemical processes, both in the water column itself 25 

and during biomineralisation, which can be difficult to disentangle. 

By including carbon isotopes in climate models, we can fill in the spatiotemporal gaps in both modern and palaeo 

datasets, and improve our understanding of the processes that control their large-scale distributions (Tagliabue and Bopp, 2008; 

Schmittner et al., 2013; Menviel et al., 2017). The Ocean Carbon-Cycle Modelling Intercomparison Project (OCMIP) was 

initiated in 1995 with the aim of evaluating the major differences between global ocean carbon cycle models and advancing 30 

our understanding of the ocean as a long-term CO2 reservoir (Orr, 1999). Carbon isotopes are not routinely incorporated into 

climate models because of the computational expense associated with the long equilibration between the deep ocean and the 
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atmosphere (Bardin et al., 2014). However, since OCMIP produced a legacy of standard input fields (Orr, 1999; Orr et al., 

2000, 2017), carbon isotopes have increasingly been implemented into models of varying complexities to validate physical 

and biogeochemical schemes, to investigate the spatiotemporal variability in isotope distributions, and to reconcile the 

interpretation of ocean proxy data. As outlined in Table 1, the community of 13C-enabled models currently includes: 

HAMOCC3.1 (Hofmann et al., 2000), the GFDL modular ocean model (MOM; Murnane and Sarmiento, 2000), CLIMBER-5 

2 (Brovkin et al., 2002), MoBidiC (Crucifix, 2005), PISCES (Tagliabue and Bopp, 2008), Bern3D+C (Tschumi et al., 2011), 

the UVic Earth System Model (ESM; Schmittner et al., 2013), iLOVECLIM (Bouttes et al., 2015), CESM (Jahn et al., 2015), 

and CSIRO Mk3L-COAL (Buchanan et al., 2019). Most of these are low resolution (3 to 5°), intermediate complexity models 

that are valuable tools for studying changes in ocean biogeochemistry on multi-millennial timescales. However, these models 

do not provide sufficient complexity in the ocean circulation, vertical mixing and atmosphere-ocean interactions to study more 10 

abrupt (decadal-to-centennial) changes. The more complex models (e.g. PISCES and CESM) provide a more sophisticated 

representation of physical and biogeochemical processes because of increased spatial resolution and/or the inclusion of more 

carbon pools. However, these models are computationally expensive, for example, at the time of their study, a 6010 year spin-

up simulation with CESM took over 7 months to run (Jahn et al., 2015). Without employing offline or accelerated spin-up 

techniques (e.g. Lindsay, 2017), the higher complexity models are therefore less practical for running the long simulations 15 

required to fully spin-up the components of the Earth System that evolve on millennial timescales, such as deep ocean 

circulation (England, 1995) and ocean biogeochemical cycles (Falkowski et al., 2000; Key et al., 2004).  

Here, we describe the implementation of 13C in the ocean component of the FAMOUS General Circulation Model 

(GCM). FAMOUS is well suited to studying ↨complex interactions between different components of the Earth System on 

decadal to multi-millennial timescales, owing to its reduced spatial resolution and increased timestep relative to the latest 20 

generation of state-of-the-art GCMs (Sect. 2.1). We use sensitivity experiments to quantify the effects of isotopic fractionation 

during air-sea gas exchange and primary productivity on the simulated δ13CDIC distributions (Sect. 2.3.3 and Sect. 3.1), and 

test three different parameterisations for photosynthetic fractionation to account for the uncertainty associated with the relative 

influence of ambient conditions, physiological effects and transport mechanism on the fractionation of carbon isotopes during 

photosynthetic CO2 fixation (Sect. 2.2.2 and Sect. 3.3). We evaluate the overall performance of the model in simulating large-25 

scale δ13CDIC distributions by comparing to modern observations (Sect. 3.2) and discuss the potential of the new 13C tracer as 

a tuning target for future recalibration work (Sect. 3.4). 
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2 Methods 

2.1 Model description 

FAMOUS is a coupled atmosphere-ocean GCM (Jones et al., 2005; Smith et al., 2008; Smith, 2012; Williams et al., 

2013) based on HadCM3 (Gordon et al., 2000; Pope et al., 2000). Both are configurations of the UK Met Office Unified Model 

version 4.5 (Valdes et al., 2017). The quasi-hydrostatic primitive equation atmospheric model is 5° in latitude by 7.5° in 5 

longitude, with 11 vertical levels on a hybrid sigma-pressure coordinate system. The rigid-lid ocean model has a horizontal 

resolution of 2.5° × 3.75° and 20 unevenly spaced vertical levels, which are approximately 10 m thick in the near-surface 

ocean and 600 m thick in the deep ocean. The atmosphere and ocean operate on 1-h and 12-h timesteps, respectively, and are 

coupled once per model day. The model currently includes oxygen (Williams et al., 2014) and chlorofluorocarbons (Pope et 

al., 2000) as optional tracers. At the time of this study, FAMOUS is capable of simulating 400 to 500 model years per wallclock 10 

day on Tier 2 (regional) and Tier 3 (local) High Performance Computers at the University of Leeds, which is more than 5 times 

the run speed of HadCM3. This makes FAMOUS ideal for running long (multi-millennial) simulations (Smith and Gregory, 

2012; Gregoire et al., 2012, 2015) or large (hundred-member) ensembles (Gregoire et al., 2011; Sagoo et al., 2013). Further 

technical documentation can be found in an ongoing special issue in Geoscientific Model Development (http://www.geosci-

model-dev.net/special_issue15.html).  15 

We added 13C as an optional passive tracer into the ocean component of FAMOUS, using the Met Office Surface 

Exchange Scheme (MOSES) version 1 (Cox et al., 1999) generation of the model to evaluate our scheme. Although a newer 

version of the land surface model exists, which includes the terrestrial carbon cycle and interactive vegetation (MOSES2.2; 

Essery et al., 2001, 2003; Williams et al., 2013; Valdes et al., 2017), problems have been identified with its representation of 

Meridional Overturning Circulation (MOC) in multi-millennial simulations with constant pre-industrial boundary conditions 20 

(Dentith et al., 2019). Specifically, FAMOUS-MOSES2.2 simulates a collapsed Atlantic MOC (AMOC) and a strong, deep 

Pacific MOC when the run length exceeds 6000 years, resulting in spurious ocean tracer distributions. However, our code is 

directly transferable between the different generations of the model, meaning that the isotope system can be extended into the 

terrestrial carbon cycle following additional tuning to improve the physical ocean circulation in FAMOUS-MOSES2 . 

2.1.1 Hadley Centre Ocean Carbon Cycle Model (HadOCC) 25 

 The marine carbon cycle in FAMOUS is modelled by HadOCC, a coupled physical-biogeochemical model that 

simulates air-sea gas exchange, the circulation of DIC, and the cycling of carbon by marine biota (Palmer, 1998; Palmer and 

Totterdell, 2001). The ecosystem model provides a simplified representation of the ocean biological system, with a single 

(nitrogenous) nutrient, a single class of phytoplankton, a single class of (non-migrating) zooplankton, and detritus. Changes in 

the size of these pools are calculated through a series of coupled differential equations that describe primary production, 30 

respiration, mortality, grazing, excretion, and the sinking and remineralisation of detritus. The system is nitrogen limited and 
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carbon flows are coupled to the nitrogen flows by stoichiometric ratios that are fixed for each pool of organic matter. In addition 

to the four biological components, HadOCC also explicitly simulates DIC and alkalinity. Modelled DIC concentrations depend 

upon phytoplankton growth and biological breakdown. Alkalinity is similarly affected by biological processes and is used to 

calculate the proportion of DIC that is in the form of CO2 in the surface waters, and consequently the air-sea CO2 flux. All six 

tracers are advected, diffused, and mixed across all levels, although phytoplankton and zooplankton concentrations are 5 

negligible below the euphotic zone (approximately the uppermost 100 m of the ocean). Detritus is the only biological tracer 

that is subject to sinking, which is parameterised at a constant rate of 10 m day-1. However, there is no representation of 

sediments: any detrital material that reaches the ocean floor is therefore immediately refluxed back to the top layer of the ocean 

to conserve carbon and nitrogen. Calcium carbonate (CaCO3) production is represented as an instantaneous redistribution of 

DIC and alkalinity below the lysocline, the depth of which is spatially and temporally constant (approximately 2500 m below 10 

sea level).  

HadOCC accurately simulates low primary production in the sub-tropical gyres and high production in the regions 

with the greatest nutrient supply: the sub-polar North Pacific and North Atlantic Oceans, and around the Antarctic Convergence 

Zone (Figure 1). However, primary production is higher than observed in the eastern equatorial Pacific, which is attributed to 

excessive upwelling in the model (Palmer and Totterdell, 2001). Production is lower than observed northwards of 50° N in the 15 

Atlantic and Pacific basins because sea ice formation and melt do not affect salinity distributions. Consequently, stably 

stratified, low salinity layers of meltwater, which promote phytoplankton growth, are not represented in the model (Palmer 

and Totterdell, 2001). Furthermore, the simulated production in coastal regions is lower than observed. There are three main 

reasons for this: (1) HadOCC does not simulate riverine input of nutrients, which are a significant source of coastal nutrients; 

(2) most of the coastlines in FAMOUS are directly adjacent to ocean grid cells that are more than 1 km deep, which dilutes 20 

near-surface nutrient concentrations; and (3) upwelling is spread out over several grid points, which causes production to be 

more diffuse than observed (Palmer and Totterdell, 2001).  

The level of representation of ecosystem processes in HadOCC is of intermediate complexity, making it 

computationally faster than more sophisticated ecosystem models that include additional POC species and/or multiple nutrients 

(e.g. PISCES). Errors in biogeochemical simulations are largely driven by biases in the physical ocean circulation (i.e. 25 

inaccuracies in the climate or ocean model to which the ecosystem model has been coupled; Doney, 1999; Doney et al., 2004; 

Najjar et al., 2007). Thus, simulating carbon isotopes in a more complex ecosystem model would not necessarily yield 

substantially better results.  

2.2 Carbon isotope implementation 

We added 13C to the four carbon pools in HadOCC: DIC, phytoplankton, zooplankton, and detritus (Figure 2). We 30 

assume that modelled DIC is 12C and carry 13C as a ratio (DI13C/DI12C), therefore virtual fluxes are not required to account for 
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the dilution or concentration effects of surface freshwater fluxes (Appendix A). We also use model units to minimise the error 

associated with carrying small numbers: 

𝑀𝑜𝑑𝑒𝑙 𝑢𝑛𝑖𝑡𝑠 =
𝐷𝐼 𝐶13

𝐷𝐼 𝐶12 ×
100

𝐶13

𝐶12⁄
𝑠𝑡𝑑

          (1) 

where 13C/12Cstd = 1.12372×10-2 (Craig, 1957). We account for isotopic fractionation during air-sea gas exchange (Sect. 2.2.1 

and Appendix B) and photosynthesis (Sect. 2.2.2 and Appendix C). Observational estimates suggest that isotopic fractionation 5 

during CaCO3 formation is between +3 ‰ and -2 ‰ (Ziveri et al., 2003), which is small compared to the other fractionation 

effects (Turner, 1982). Previous 13C isotope implementation studies have therefore assumed either no isotopic fractionation 

during CaCO3 production (Schmittner et al., 2013) or prescribed constant values, for example, +1 ‰ (Tagliabue and Bopp, 

2008) or +2 ‰ (Jahn et al., 2015). We conducted sensitivity tests where fractionation during CaCO3 formation was included 

at constant rates of -2 ‰, 0 ‰ and +2 ‰, respectively. After 10,000 years, there was 0.001 ‰ difference in both the mean 10 

surface ocean δ13CDIC values and the surface standard deviations between all three simulations, and 0.02 ‰ difference between 

the three global volume-weighted integrals. Since these differences are small, we proceeded with the equivalent of no 

fractionation during CaCO3 production (αCaCO3 = 1.0).  

2.2.1 Air-sea gas exchange 

The air-sea gas flux of DI12C (F) is calculated as: 15 

𝐹 = 𝑃𝑉 × (𝐶𝑠𝑎𝑡 − 𝐶𝑠𝑢𝑟𝑓)            (2) 

where Csat is the saturation concentration of atmospheric CO2 (in mol m-3), Csurf is the surface aqueous concentration of CO2 

(in mol m-3), and PV is the piston velocity (in cm h-1), which is calculated as:  

𝑃𝑉 = 𝑎 × 𝑢2 × (1 −  𝑎𝑖𝑐𝑒) × (
𝑆𝑐

660
)

−0.5

         (3) 

where a is a tuneable coefficient, u is the wind speed (in m s-1), aice is the fractional ice cover and Sc is the Schmidt number 20 

for CO2, calculated as a function of sea surface temperature (SST, in °C):   

𝑆𝑐 = 2073.1 − 125.62 × 𝑆𝑆𝑇 + 3.6276 × 𝑆𝑆𝑇2 − 0.043219 × 𝑆𝑆𝑇3.     (4) 

The air-sea gas flux of DI13C/DI12C (𝐹13

12

) is calculated as: 

𝐹13

12

=
1

𝐶12 × 𝑃𝑉 × [𝛼𝑘 × 𝛼𝑎𝑞←𝑔 × (𝐶𝑠𝑎𝑡 ×
𝐴13

𝐴12 −
𝐶𝑠𝑢𝑟𝑓×

𝐶13

𝐶12

𝛼𝐷𝐼𝐶←𝑔
) − (

𝐶13

𝐶12 × [𝐶𝑠𝑎𝑡 − 𝐶𝑠𝑢𝑟𝑓])]    (5) 

where 13A/12A and 13C/12C are the 13C/12C ratios of the atmosphere and DIC, respectively, αk is the constant kinetic fractionation 25 

factor (0.99919), αaq←g is the temperature-dependent fractionation during gas dissolution: 

𝛼𝑎𝑞←𝑔 = 0.9986 − (4.9 × 10−6) × 𝑆𝑆𝑇 ,         (6) 
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and αDIC←g is the temperature-dependent fractionation between aqueous CO2 and DIC: 

𝛼𝐷𝐼𝐶←𝑔 = 1.01051 − (1.05 × 10−4) × 𝑆𝑆𝑇.         (7) 

All three fractionation factors are based on the equations of Zhang et al. (1995). However, following Schmittner et al. (2013), 

we neglect the effect that the carbonate fraction (fCO3) has on αDIC←g because this is much smaller (0.05 ‰) than the 

temperature effect (3 ‰). Currently, atmospheric CO2 and δ13C concentrations can either be held constant or prescribed from 5 

a file that contains a single global weighted-average value per year. 

2.2.2 Photosynthesis 

Isotopic fractionation during photosynthesis (αPOC←DIC, herein αp) is calculated as:  

𝛼𝑝 =
𝛼𝑎𝑞←𝑔

𝛼𝐷𝐼𝐶←𝑔
× 𝛼𝑃𝑂𝐶←𝑎𝑞           (8) 

where αPOC←aq is the equilibrium fractionation factor between aqueous CO2 and particulate organic carbon (POC).  10 

Empirical relationships for the different biogeochemical fractionation effects (αaq←g, αDIC←g and αPOC←aq) have been 

established from laboratory experiments, modern oceans and lakes, and the sedimentary record. However, there are still 

uncertainties associated with the parameterisation of αPOC←aq. Early studies investigated a potential temperature dependence 

of the carbon isotope composition of marine phytoplankton. For example, Sackett et al. (1965) proposed that photosynthetic 

fractionation is higher at lower temperatures (0.23 ‰ per °C) after observing that phytoplankton in the Drake Passage had 15 

more negative δ13C values than those in the tropics. Wong and Sackett (1978) also recorded small temperature effects (-0.13 

to +0.36 ‰ per °C) in 17 species of marine phytoplankton; however, the authors concluded that the 15 ‰ range observed in 

their samples was primarily related to different metabolic pathways within the organisms. Numerous studies have suggested 

that the fractionation of carbon isotopes during photosynthetic CO2 fixation relates to aqueous CO2 concentrations (CO2
*) in 

the ambient environment (Popp et al., 1989; Rau et al., 1989; Jasper and Hayes, 1990; Hollander and McKenzie, 1991; Freeman 20 

and Hayes, 1992). However, these studies assumed that CO2 only enters the phytoplankton by passive diffusion and neglected 

physiological effects, such as phytoplankton growth rate, cell size and geometry, and cell membrane permeability. Taking into 

consideration that physiological factors may modify, weaken, or eliminate the relationship between CO2
* and photosynthetic 

fractionation, Rau et al. (1996) proposed a model that accounted for the isotopic composition of the ambient aqueous CO2, 

isotopic fractionation associated with diffusive transport into the cell, and isotopic fractionation associated with enzymatic, 25 

intracellular fixation. Laws et al. (1995) identified a linear relationship between phytoplankton growth rate, CO2
* and isotopic 

fractionation during photosynthesis, under the assumption that the growth rate is proportional to the net transport of CO2 into 

the cell. A later study by Laws et al. (1997), which analysed the same species of marine diatom over a larger range of CO2
*, 

revised this to a non-linear relationship. Burkhardt et al. (1999) and Keller and Morel (1999) additionally included active 

bicarbonate transport in their calculations, recognising that aqueous CO2 is not the only substrate for photosynthetic fixation 30 
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and that processes other than diffusion can contribute to inorganic carbon acquisition. This has been a relatively inactive 

research area in the last 20 years, but there remains no single accepted model for fractionation during photosynthesis.  

Consequently, previous carbon isotope implementation studies have used a number of different parameterisations for 

biological fractionation (Table 1), with the choice of scheme largely reflecting the complexity of the simulated biogeochemical 

and ecosystem processes. It is difficult to compare the success of the different parameterisations used by individual modelling 5 

groups because inter-model differences in the simulated isotopic distributions predominantly relate to resolution, complexity, 

and biases in the physical ocean circulation and ocean biogeochemistry, as opposed to the choice of fractionation scheme. 

However, Hofmann et al. (2000) tested three different fractionation schemes within a single model. In their study, the 

oversimplified assumption of constant biological fractionation, taken from Maier-Reimer (1993), failed to reproduce the 

observed latitudinal gradients in δ13CPOC. Calculating the fractionation as a function of CO2
*, as per Popp et al. (1989), 10 

successfully replicated the interhemispheric asymmetry in δ13CPOC, but a growth rate dependent fractionation (e.g. Rau et al., 

1996) was required to additionally capture the seasonal variations. Jahn et al. (2015) also demonstrated differences between 

three different fractionation schemes within a single model. In their study, the simple scheme of Rau et al. (1989) produced 

lower δ13CDIC values in the surface ocean and higher δ13CDIC values below 150 m compared to the more complex 

parameterisations of Laws et al. (1995) and Keller and Morel (1999). The differences between the intermediate complexity 15 

formulation (Laws et al., 1995) and the most complex formulation (Keller and Morel, 1999) were small, and the Laws et al. 

(1995) equation was chosen as the default scheme.  

To account for the uncertainty associated with biological fractionation in FAMOUS, we tested three different 

parameterisations for αPOC←aq. In the standard simulation (std), we calculated αPOC←aq according to Popp et al. (1989): 

𝛼𝑃𝑂𝐶←𝑎𝑞 = −0.017 log(CO2
*) + 1.0034         (9) 20 

where CO2
* is the aqueous CO2 concentration (in μmol L-1).  

Both of the alternative parameterisations calculated αPOC←aq as a function of the phytoplankton specific growth rate 

(μ) and CO2
*, representing an increase in complexity relative to the standard scheme. The first was a linear relationship derived 

from the experimental results of Laws et al. (1995): 

𝛼𝑃𝑂𝐶←𝑎𝑞 =
−15

(
𝜇

𝐶𝑂2
∗⁄ ) − 15.371

 .           (10) 25 

The second was a non-linear relationship derived from the experimental results of Laws et al. (1997):  

𝛼𝑃𝑂𝐶←𝑎𝑞 =
1 + (

𝜇
0.225𝐶𝑂2

∗⁄ )

1.0268 + 1.0055(
𝜇

0.225𝐶𝑂2
∗⁄ )

 .          (11) 

Because HadOCC is a relatively simple ecological model, with only a single representation of phytoplankton, we did 

not test more complex schemes, such as those that use phytoplankton type-specific cell parameters (e.g. Burkhardt et al., 1999; 

Keller and Morel, 1999).  30 
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2.2.3 Advection 

The default advection scheme in FAMOUS is Quadratic Upstream Interpolation for Convective Kinematics (QUICK)  

with flux limiter (Leonard et al., 1993). This scheme is used to compute the transport of tracers such as temperature, salinity, 

nutrients, and DIC throughout the ocean. For consistency, we use the same advection scheme to calculate 13C concentrations 

in the ocean interior. For greater numerical stability, δ13CDIC is fixed at 0 ‰ in the Hudson Bay and Baltic Sea. With the 5 

model’s standard preindustrial land-sea mask, these inland bodies of water are isolated from the global oceans, therefore their 

isotope concentrations will not affect large-scale tracer distributions. 

2.3 Simulations 

2.3.1 Spin-up simulation 

Carbon isotope simulations must be spun up over multiple millennia (5000 to 15,000 years; Orr et al., 2000) to reach 10 

steady state because of the long timescale of deep ocean ventilation (Bardin et al., 2014). We therefore ran our spin-up 

simulation for 10,000 years with constant pre-industrial boundary conditions, where δ13Catm was fixed at -6.5 ‰ (Francey et 

al., 1999) and δ13Cocn was initialised at a globally uniform value of 0 ‰. The global volume-weighted integral of δ13CDIC started 

to stabilise after 7000 years, and at the end of the spin-up simulation, the drift was less than 0.001 ‰ yr-1 (Figure S1). 

2.3.2 Historical simulation 15 

A transient simulation for the period 1765 to 2000 CE was initialised from the end of the spin-up simulation to 

generate model output that is directly comparable to modern observations (Figure 3). Atmospheric CO2 concentrations were 

prescribed from the OCMIP-2 files (Orr et al., 2000) and δ13Catm was prescribed from the Law Dome and South Pole ice core 

records (Rubino et al., 2013). The decrease in δ13Catm from -6.5 ‰ in 1750 to approximately -8.0 ‰ in 2000 is due to the Suess 

effect. First observed in tree ring records of atmospheric composition, the Suess effect refers to the dilution of 13C in any 20 

carbon pool due to fossil fuel burning (Suess, 1955; Keeling, 1979). Fossil fuels formed millions of years ago from organic 

matter, which is relatively 13C-depleted due to isotopic fractionation during photosynthesis. Their isotopic signature is therefore 

approximately 20 ‰ lower than that of the ambient atmosphere (Andres et al., 1994, 1996). To act as a control, the spin-up 

simulation was continued for an additional 235 years with constant CO2 and δ13Catm.  

2.3.3 Sensitivity experiments 25 

Five further simulations were conducted to quantify the effects of fractionation during air-sea gas exchange and 

primary productivity on the simulated δ13CDIC distributions. All five simulations were run for 10,000 years with constant pre-

industrial boundary conditions. In each of the simulations, δ13Catm was fixed at -6.5 ‰ and δ13Cocn was initialised at 0 ‰. At 
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the end of each of the spin-up simulations, the global volume-weighted δ13CDIC integral was drifting by less than 0.001 ‰ yr-

1.  

Three of the simulations were designed to quantify the effects of the individual processes outlined in Sect. 2.2 (Table 

2). In the ki-fract-only simulation, αaq←g, αDIC←g, and αp were all set to 1, therefore only kinetic fractionation effects were 

calculated. In the no-asgx-fract simulation, αk, αaq←g, and αDIC←g were all set to 1 to eliminate the effect of fractionation during 5 

air–sea gas exchange. Fractionation during photosynthesis continued to be calculated using the std biological fractionation 

scheme, as per Eq. (8 – 9). In the no-bio-fract simulation, αp was set to 1 to remove the effect of fractionation during 

photosynthesis, but fractionation during air-sea gas exchange continued to be calculated as per Eq. (5 – 7).  

The other two simulations were designed to assess the sensitivity of the simulated δ13CDIC distributions to the choice 

of biological fractionation scheme (Sect. 2.2.2). In the L95 simulation, αPOC←aq was calculated using Eq. (10), whilst in the 10 

L97 simulation, αPOC←aq was calculated using Eq. (11). As with the std simulation, we initialised a 235 year transient simulation 

(with the 13C-Suess effect) from the end of both of these spin-ups to allow the output from all three photosynthetic fractionation 

schemes to be compared directly to observations. 

3 Results and discussion  

3.1 Validating the isotope scheme 15 

Isolating the different fractionation effects allows us to assess the relative contribution of air-sea gas exchange and 

biology to the simulated δ13CDIC distributions, and validate that the new isotope scheme is responding to physical and 

biogeochemical processes as expected. If there is no fractionation during either air-sea gas exchange or photosynthesis, the 

ocean equilibrates at a uniform value of -6.5 ‰, in line with the atmosphere. Kinetic fractionation has only a minor effect on 

surface ocean δ13CDIC distributions, with simulated δ13CDIC values in the ki-fract-only simulation ranging between -6.57 ‰ in 20 

the Labrador Sea and -6.42 ‰ in the eastern equatorial Pacific (Figure 4a). This represents a -0.07 ‰ to +0.08 ‰ shift relative 

to no isotopic fractionation. Specifically, there is 13C depletion (low δ13CDIC) in areas of net CO2 invasion, such as the extra-

tropics and high latitudes, and 13C enrichment (high δ13CDIC) in the equatorial upwelling zones and the deep water formation 

regions where CO2 is being outgassed. Kinetic fractionation has a negligible effect on the δ13CDIC depth profile, with globally 

averaged δ13CDIC values of -6.4955 ‰ in the surface ocean and -6.5011 ‰ in the abyssal ocean (Figure 5).  25 

When both the equilibrium and kinetic fractionation effects are included during air-sea gas exchange (no-bio-fract), 

the large-scale δ13CDIC distributions are closely related to the SST patterns because of the temperature dependence of αaq←g and 

αDIC←g (Figure 4b). Relatively high δ13CDIC values (> +2.5 ‰) are simulated in the Southern Ocean due to the combined effect 

of CO2 outgassing and low SSTs, both of which cause 13C enrichment. The δ13CDIC values in the Arctic Ocean are comparably 

low because the model has more extensive sea ice in the Northern Hemisphere than in the Southern Hemisphere, which inhibits 30 
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air-sea gas exchange. The highest values (+3.00 ‰) are simulated in the eastern equatorial Pacific where there are high rates 

of net CO2 outgassing and Antarctic Bottom Water (AABW), which has a high δ13CDIC signature, is upwelled. Low δ13CDIC 

values are simulated in the Indian Ocean, with the lowest values (+1.1 ‰) in South East Asia, because  the sea surface is 

warmer than at the equivalent latitudes in the Atlantic and Pacific Oceans. The globally averaged δ13CDIC values in this 

simulation range between +2.03 ‰ in the surface ocean and +2.16 ‰ in the deep ocean, with a minimum value of +2.00 ‰ at 5 

a depth of approximately 200 m (Figure 5). Below approximately 1500 m, the globally averaged δ13CDIC is near constant with 

depth, matching the simulated temperature profile. 

In the no-asgx-fract simulation, δ13CDIC values in the surface ocean range between -7.65 ‰ in the eastern equatorial 

Pacific and -3.89 ‰ in the eastern equatorial Atlantic (Figure 4c), representing a shift of -1.15 ‰ to +2.61 ‰ relative to no 

isotopic fractionation. The asymmetry between these two upwelling zones occurs because the waters that are being upwelled 10 

from the deep Pacific Ocean are approximately 600 years older than the equivalent waters in the Atlantic Ocean. They therefore 

contain a higher percentage of remineralised organic matter, which is enriched in 12C. Relatively low δ13CDIC values are also 

simulated in the Southern Ocean and northeast North Atlantic Ocean where older water is mixed upwards from the abyssal 

ocean to the surface ocean at sites of deep water formation. The globally averaged δ13CDIC values in this simulation range 

between -5.85 ‰ in the productive surface ocean and -7.56 ‰ in the abyssal ocean, with a minimum value of -7.86 ‰ at a 15 

depth of approximately 1000 m, which corresponds to the depth of maximum remineralisation in the model (Figure 5). The 

values change from greater than -6.5 ‰ (enriched in 13C relative to no fractionation) to less than -6.5 ‰ (depleted in 13C 

relative to no fractionation) at a depth of approximately 100 m, which corresponds to the photic zone.  

The spatial patterns in the std simulation and the no-asgx-fract simulation are closely matched, both in the surface 

ocean (Figure 6) and at depth (Figure 5), demonstrating the importance of biology to the large-scale δ13CDIC distributions. 20 

However, in the surface layer, air-sea gas exchange partly compensates for the biological effects in the Southern Ocean, the 

Northern Hemisphere deep water formation region, and the equatorial upwelling zones, as inferred from the peak surface zonal 

mean δ13CDIC values at 60° S, 55° N and 0° in the no-bio-fract simulation, which correspond with reduced amplitude troughs 

in the std simulation relative to the no-asgx-fract simulation. Similar results pertaining to the relative influence of air-sea gas 

exchange and biology were presented by Schmittner et al. (2013), who concluded that air-sea gas exchange and temperature-25 

dependent fractionation reduce the spatial δ13CDIC gradients that are created by biology. Earlier work by Murnane and 

Sarmiento (2000) and Schmittner et al. (2013) also supports the notion that biology is the dominant factor controlling δ13CDIC 

distributions in the interior ocean. Overall, the sensitivity experiments demonstrate that the new carbon isotope scheme is 

accurately responding to physical and biogeochemical processes in the model, such as temperature, air-sea gas exchange, and 

the biological pump. 30 
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3.2 Comparison to observations 

To assess the model performance in representing modern large-scale 13C distributions, we compare the simulated 

mean δ13CDIC values for the 1990s with observations from GLODAP version 2 (v2; Key et al., 2015; Olsen et al., 2016) and 

the gridded global ocean climatology of Eide et al. (2017). The δ13CDIC values in the std simulation are, on average, 0.97 ‰ 

higher than the GLODAPv2 observations in the surface ocean (Figure 7) and 0.64 ‰ higher globally, with root mean square 5 

error (RMSE) values of 1.03 ‰ and 0.91 ‰, respectively. However, the simulated range in the surface ocean (3.2 ‰) is in 

excellent agreement with the observed range (3.3 ‰). Specifically, the simulated surface δ13CDIC values are between +1.4 ‰ 

and +4.6 ‰, with a mean value of +2.6 ‰, whilst the observed surface δ13CDIC values range between -0.3 ‰ and +3.0 ‰, with 

a mean value of +1.5 ‰.  

Re-examining the results of the sensitivity experiments allows us to ascertain the underlying causes of the model-data 10 

discrepancy. Schmittner et al. (2013; herein S13) conducted a similar set of simulations with the UVic ESM to elucidate the 

relative influence of biology and air-sea gas exchange on the distribution of oceanic δ13CDIC (see Table 1 in S13). Overall, there 

is good agreement between our ki-fract-only and no-bio-fract simulations and the equivalent simulations in S13 (ki-fract and 

no-bio, respectively), both in the surface ocean and at depth. However, there is a clear difference between the results of our 

no-asgx-fract simulation and the equivalent simulation in S13 (const-gasx). Specifically, the surface ocean zonal mean δ13CDIC 15 

values in our no-asgx-fract simulation range between -6.6 ‰ at 60 °S and -5.5 ‰ in the sub-tropics, with a local minimum of 

-5.8 ‰ at the equator (Figure 6). For comparison, the surface ocean zonal mean values in const-gasx range between -8.0 ‰ in 

the Southern Ocean and -5.75 ‰ in the Southern Hemisphere sub-tropics, with a localised minimum of -6.25 ‰ at the equator 

(see Figure 4 in S13). Similarly, whilst the globally averaged deep ocean δ13CDIC values in our no-asgx-fract simulation have 

a comparable range (2.01 ‰) to the deep ocean values in const-gasx, there is an offset of approximately 1 ‰, with S13 20 

simulating δ13CDIC values of -6.4 ‰ in the surface ocean, -8.4 ‰ in the deep ocean, and near constant values below 1000 m 

(see Figure 5 in S13). Overall, the δ13CDIC values in the standard simulation with the UVic ESM are in good agreement with 

observations, with a global linear regression r2 value of 0.91 and a global RMSE of 0.33 ‰ (Schmittner et al., 2013; Buchanan 

et al., 2019). We therefore postulate that the offset in the simulated δ13CDIC values in FAMOUS relates to biases in the 

biological carbon cycle.  25 

Elucidating the exact cause of δ13CDIC model-data discrepancy is difficult. There are a number of fluxes in to and out 

of the DI13C pool (Figure 2), each of which could have biases that are compounding or reducing the overall δ13CDIC bias. For 

example, if any of the rates of phytoplankton respiration, phytoplankton mortality or zooplankton mortality are too low, the 

input of 12C-enriched material back into the DIC pool would be insufficient. Similarly, if the model is not simulating enough 

remineralisation, either as a direct consequence of the parameterised remineralisation rate or as a result of insufficient POC 30 

export, the input of 12C-enriched material back into the DIC pool would again be too low.  
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Primary producers preferentially take up 12C during photosynthesis, therefore higher than observed rates of net 

primary production in the photic zone would increase δ13CDIC. However, if the δ13CDIC discrepancy in FAMOUS was a simple 

function of the biases in net primary production, δ13CDIC would be lower than observed in the subtropical gyres, the Indian 

Ocean, and the northern North Atlantic and North Pacific Oceans, and higher than observed in the equatorial upwelling zones 

and the Southern Ocean (Figure 1). Thus, whilst the differences in net primary production could be contributing towards the 5 

δ13CDIC bias, particularly in the equatorial upwelling zones, they alone cannot explain the unidirectional offset.  

Alternatively, the fractionation during photosynthesis could be too strong as a result of imbalances in the carbonate 

chemistry (Figure S2). The global mean alkalinity in FAMOUS is 81 μmol kg-1 higher than observed and the mean alkalinity 

in the uppermost 50 m of the ocean is 107 μmol kg-1 too high (Key et al., 2004; Sarmiento and Gruber, 2006). In addition, the 

simulated global mean DIC concentration is 54 μmol kg-1 higher than observed and the mean DIC concentration in the 10 

uppermost 50 m of the ocean is 96 μmol kg-1 too high (Key et al., 2004; Sarmiento and Gruber, 2006). Furthermore, the mean 

ocean temperatures in FAMOUS are warmer than observed, both globally (2.2 °C) and in the uppermost 50 m of the ocean (1 

°C; Sarmiento and Gruber, 2006; Locarnini et al., 2013). Increasing alkalinity increases CO2
*, whilst increasing the temperature 

and DIC concentrations decreases CO2
*. Hence, the overall effect of the carbonate chemistry biases in FAMOUS result in the 

global mean CO2
* being 3.03 μmol L-1 too low and the mean CO2

* in the uppermost 50 m of the ocean being 0.58 μmol L-1 too 15 

high. In the photic zone, this translates to a simulated αp of 0.97378 compared to an observed αp of 0.97415 using the std 

fractionation parameterisation. Thus, we postulate that imbalances in the carbonate chemistry, and the consequent differences 

in αp, are contributing towards the δ13CDIC bias, but the overall effect is small. 

The smallest model-data discrepancies in the surface layer are in the Southern Ocean and the northeast North Atlantic 

Ocean where deep convection mixes 12C-enriched waters upwards (Figure 7). In contrast, in the equatorial upwelling zones, 20 

the effect of higher than observed primary productivity (increasing δ13CDIC) outweighs the effect of vertical mixing (reducing 

δ13CDIC), therefore the overall model-data biases are higher in these regions. Despite the global offset, the model correctly 

simulates lower δ13CDIC values in the Indian Ocean compared to the Atlantic and Pacific Oceans, because the Indian Ocean is 

relatively nutrient poor, both in the model and reality (Figure S3), which limits primary productivity (Figure 1). Similar to 

previous 13C modelling studies (e.g. Hofmann et al., 2000; Tagliabue and Bopp, 2008; Schmittner et al., 2013), FAMOUS also 25 

accurately simulates the observed latitudinal gradient in mixed layer δ13CPOC, with relatively high values (≈ -20 ‰) in the low 

latitudes and relatively low values (≈ - 27 ‰) at high latitudes (Figure 8).  

As observed, δ13CDIC decreases with depth in all basins due to the remineralisation of isotopically light organic matter 

(Figure 9). The maximum remineralisation depth in the model is approximately 1000 m, which is 200 to 500 m shallower than 

observed. In the deep ocean, the highest δ13CDIC values are in the Atlantic basin, with intermediate values in the Indian basin, 30 

and the lowest values in the Pacific basin, where the waters are older and therefore contain more remineralised organic material 

(enriched in 12C). However, there are notable structural differences in the zonal means (Figure 10), which arise due to 
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inaccuracies in the physical ocean circulation in FAMOUS. Specifically, FAMOUS does not capture the observed structure in 

the Atlantic basin because, in this generation of the model, the AMOC is characterised by an over-deep North Atlantic Deep 

Water (NADW) cell and insufficient AABW formation (Dentith et al., 2019). FAMOUS also simulates weak (less than 3 Sv) 

ventilation to depths of 2000 m in the North Pacific Ocean (Dentith et al., 2019), which prevents the accumulation of old, 12C-

enriched (low δ13CDIC) waters at intermediate depths in the Northern Hemisphere. Instead, the oldest carbon in the model is in 5 

the eastern equatorial Pacific. In addition, the surface winds in the model are weaker than observed (Kalnay et al., 1996), 

resulting in a relatively shallow mixed layer. This promotes the excessive accumulation of high δ13CDIC values in the surface 

ocean, which is particularly notable in the Southern Hemisphere sub-tropical gyres. These physical model biases are also 

clearly visible in the zonal mean profiles of other tracers, such as nutrients (Figure S4) and DIC (Figure S5). The overall shape 

of the simulated depth profile reaffirms the notion that there are inaccuracies in both the physical and biogeochemical 10 

components of the model (Figure 9). Below approximately 1000 m, the simulated δ13CDIC values increase with depth in each 

ocean basin, whilst the observed basin averages are near constant with depth. The offset between the simulated and observed 

values is greatest in the deep Atlantic Ocean, where too much 13C-enriched water from the shallow ocean is being circulated 

into the abyssal ocean. However, the trend towards increasing δ13CDIC with depth could also be in-part explained by insufficient 

remineralisation in the model. This is supported by lower than observed nutrient concentrations in the deep ocean (Figure S4). 15 

HadOCC’s global export ratio at 2000 m is within the observed range, but a lack of spatial variation means that the geographic 

distributions are partially incorrect (Palmer and Totterdell, 2001). Hence, we postulate that localised inaccuracies in the export 

ratio, together with deficiencies in the parameterisation of the remineralisation rate, are contributing towards the δ13CDIC offset. 

The basin-averaged δ13CDIC bias is smallest in the Pacific Ocean, where the waters are old and therefore have had more time 

to remineralise, thereby partially compensating for the biogeochemical biases. Indeed, the shape of the simulated and observed 20 

basin-averaged depth profiles are in good agreement below approximately 2000 m in the Pacific Ocean, despite the structural 

differences in the zonal mean. 

As outlined in Sect. 3.1, our carbon isotope implementation is sensitive to physical and biogeochemical processes in 

the model. Thus, whilst biases in the overturning circulation and the biological pump are currently limiting the model’s ability 

to accurately represent modern large-scale 13C distributions, the model-data agreement could be improved if the physical and 25 

ecological components of FAMOUS were recalibrated. This will be discussed further in Sect. 3.4. 

3.3 Biological fractionation parameterisations 

Given the uncertainty associated with biological fractionation (Sect. 2.2.2), we tested three different parameterisations 

for equilibrium fractionation during photosynthesis. For all three parameterisations, the total fractionation during 

photosynthesis is greatest in the high latitudes (where SSTs are relatively low and CO2
* is relatively high) and lowest in the 30 

equatorial regions (where SSTs are relatively high and CO2
* is relatively low; Figure 11). The std parameterisation produces 
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the largest range of αp values (between approximately 0.97 and 0.98), whilst the L95 parameterisation produces the smallest 

range (between approximately 0.964 and 0.970). The total fractionation during photosynthesis increases with the complexity 

of the parameterisation, with L97 producing the largest overall effect (with a minimum αp of 0.9635). For all three 

parameterisations, αp decreases (i.e. the strength of fractionation increases) with depth in the photic zone, with the largest 

gradient produced by the std parameterisation (Figure S6).  5 

The large-scale δ13CDIC patterns are very similar for all three photosynthetic fractionation schemes, but the 

parameterisations that take the phytoplankton growth rate in account simulate higher surface ocean δ13CDIC values everywhere 

except in the Southern Ocean, the Nordic Seas, and the eastern equatorial regions, where older 13C-depleted waters are mixed 

upwards from the abyssal ocean during deep water formation and upwelling (Figure 7). The differences are amplified when 

using the L97 parameterisation (RMSE = 1.24 ‰, bias = 1.15 ‰), which specifies a non-linear relationship between μ and 10 

CO2
*, compared to the L95 parameterisation (RMSE = 1.21 ‰, bias = 1.13 ‰), which specifies a linear relationship (Figure 

S7). Conversely, the alterative parameterisations decrease δ13CDIC at depth compared to the std simulation, bringing the 

simulated values closer to the observations (Figure 9). Below approximately 500 m depth, the δ13CDIC values are consistently 

lower when using the L97 parameterisation compared to the L95 parameterisation. This is due to the preconditioning of δ13CDIC 

and δ13CPOC as a result of fractionation during photosynthesis in the photic zone. In the L95 and L97 simulations, δ13CPOC is 15 

lower than in the std simulation due to increased uptake of 12C during primary production (lower αp). The latitudinal δ13CPOC 

gradients in the mixed layer in these simulations are lower than observed, with zonal mean values ranging between 

approximately -30 ‰ at the equator and -33 ‰ at 60° N/S (Figure 8). When the POC is remineralised, a relatively low δ13C 

signal is therefore being released back into the DIC pool, which causes the δ13CDIC in the deep ocean to be lower than in the 

std simulation. Thus, although the rates of biological exchange and overturning circulation are the same in all three simulations, 20 

the preconditioning of δ13CDIC and δ13CPOC in the photic zone creates differences between the three simulations at depth. Whilst 

the global RMSE compared to the GLODAPv2 dataset is lower in the L95 and L97 simulations (0.86 ‰ and 0.87 ‰, 

respectively), it is still almost double the RMSE in other models (Buchanan et al., 2019). Overall, increasing the complexity 

of the fractionation scheme does not significantly improve the model-data agreement because of the aforementioned physical 

and biogeochemical biases. 25 

3.4 A new tuning target 

In this study, we have demonstrated that the new carbon isotope scheme in FAMOUS is sensitive to both physical 

and biogeochemical processes. The simulated δ13CDIC distributions therefore reflect known physical inaccuracies (such as over-

deep NADW and weak convection in the sub-polar North Pacific Ocean) and have allowed us to identify previously 

https://doi.org/10.5194/gmd-2019-250
Preprint. Discussion started: 7 January 2020
c© Author(s) 2020. CC BY 4.0 License.



 

16 

 

 

undisclosed biogeochemical biases (e.g. in the representation of remineralisation). The new tracer therefore offers excellent 

potential as a holistic tuning target for recalibrating FAMOUS in the future.  

FAMOUS has previously been tuned both systematically (Jones et al., 2005; Gregoire et al., 2011; Williams et al., 

2013) and manually (Smith et al., 2008). Most recently, Williams et al. (2013) tuned the 20 structural parameters in HadOCC 

(coupled to FAMOUS-MOSES2.2) using an objective hypercube technique. Specifically, the parameter set included the C:N 5 

ratios for the different carbon pools, phytoplankton-specific parameters (e.g. maximum rate of photosynthesis), zooplankton-

specific parameters (e.g. linear and quadratic zooplankton mortality rates), detritus-specific parameters (e.g. shallow and deep 

remineralisation rates), and carbonate-specific parameters (e.g. calcite export ratio). The main diagnostics used to evaluate the 

performance of the ensemble members were December-January-February and June-July-August surface air temperatures, 

annual mean total precipitation rate, annual mean nitrate concentrations, and primary productivity. Crucially, this study only 10 

ran each perturbed parameter simulation for 200 years and neglected to evaluate the strength and structure of the AMOC. The 

optimal parameter set therefore had small but important imbalances in the surface climate, which caused the AMOC to collapse 

over longer (multi-millennial) timescales (Dentith et al., 2019). 

HadOCC has not yet been tuned for the configuration of the model used in our study (FAMOUS-MOSES1). 

Simultaneously recalibrating HadOCC and the physical ocean circulation in this generation of the model could therefore 15 

improve the simulated δ13CDIC distributions. We propose that the addition of δ13C as a tuning target would improve the work 

of Williams et al. (2013) because it is an objective and straightforward way of assessing whether the balance between all of 

the ecological processes in the model is correct. We also suggest that implementing the radioactive isotope (14C) into FAMOUS 

would be beneficial for future recalibration work (as well as subsequent scientific application of the isotope-enabled model) 

because it is more sensitive to overturning circulation and air-sea gas exchange, and less sensitive to the biological pump, than 20 

13C. 

Summary 

We have added the stable isotope 13C to the ocean component of the FAMOUS GCM, using the MOSES1 generation 

of the model to validate our scheme. We account for fractionation during air-sea gas exchange and photosynthesis, and have 

tested three different parameterisations for the latter. The model captures the range of observed δ13CDIC values in the surface 25 

ocean, but the simulated values are approximately 1 ‰ too high at all depths. The differences between the three fractionation 

schemes are relatively minor, but when fractionation during photosynthesis accounts for phytoplankton growth rates as 

opposed to just aqueous CO2 concentrations the discrepancies between the model and observations are further increased in the 

surface ocean and reduced at depth. The sensitivity experiments suggest that the simulated values are too high because of 

underlying biases in the biological carbon cycle, therefore retuning HadOCC could improve the model-data agreement. Biases 30 

in the large-scale ocean circulation also inhibit the model’s ability to accurately simulate the large-scale distribution of tracers 

https://doi.org/10.5194/gmd-2019-250
Preprint. Discussion started: 7 January 2020
c© Author(s) 2020. CC BY 4.0 License.



 

17 

 

 

in the deep ocean. Retuning the ocean circulation to improve the representation of the AMOC, in particular, would further 

reduce the model-data discrepancies. Thus, our results emphasise the utility of implementing carbon isotopes in GCMs; the 

simulated isotope distributions provide an additional measure against which the physical and biogeochemical model 

performance can be evaluated and offer an extra tuning metric for prospective development work. In the future, we intend to 

implement 14C following the same framework, before using the isotope-enabled model to study ocean circulation and the 5 

marine carbon cycle in both a modern and palaeo context, for example, at the Last Glacial Maximum (21,000 years ago) and 

during the last deglaciation (21,000 to 11,000 years ago).   
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Code availability 

FAMOUS can be obtained from http://cms.ncas.ac.uk/wiki/UmFamous. The code detailing the advances described in this 

paper are available via the Research Data Leeds Repository (Dentith, 2019) under a Creative Commons Attribution 4.0 

International (CC BY 4.0) license. These files are known as code modification (“mod”) files and should be applied to the 

original model code, which can be viewed online at http://cms.ncas.ac.uk/code_browsers/UM4.5/UMbrowser/index.html. All 5 

of the additional modification files that are required to run the simulations described in this manuscript are available in the 

Supplementary Material. These standard FAMOUS updates – some of which have been described by Smith et al. (2008), Smith 

(2012), and Valdes et al. (2017) – and the original model code are protected under UK Crown Copyright. The UM configuration 

(“basis”) files for the simulations described in this paper are also available in the Supplementary Material. 

 10 

Table 3: Overview of the simulations described in this study, as denoted by their unique five letter Met Office UM identifiers 

and the notation used within this manuscript. 

Identifier Simulation Duration 

XOAVB std spin-up 0 to 10,000 years 

XOAVI std transient 1765 to 2000 CE 

XOGNC std control 1765 to 2000 CE 

XOAVD ki-fract-only 0 to 10,000 years 

XOAVE no-bio-fract 0 to 10,000 years 

XOAVF no-asgx-fract 0 to 10,000 years 

XOAVK L95 spin-up 0 to 10,000 years 

XOAVU L95 transient 1765 to 2000 CE 

XOAVL L97 spin-up 0 to 10,000 years 

XOAVW L97 transient 1765 to 2000 CE 

Data availability 

The data are available via the Research Data Leeds Repository (https://doi.org/10.5518/621).  
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Tables 

Table 1: Overview of existing 13C-enabled models. 

Model Horizontal resolution Levels Tracers αPOC←aq parameterisation 

HAMOCC3.1 3.5° × 3.5° 15 

ALK1, CaCO3, DIC, δ13CDIC, 

DOC2, POC, δ13CPOC, 

phytoplankton, zooplankton, 

PO4
3-, H4SiO4, O2 

Maier-Reimer (1993), 

Popp et al. (1989), 

Rau et al. (1996) 

GFDL MOM 4° × 4° 12 
ALK, DIC, DI13C, DOC, 

DO13C, PO4
3- 

Freeman and Hayes (1992) 

CLIMBER-2 
2.5° × 3 zonally 

averaged basins 
20 

ALK, DIC, DI13C, DI14C, fast 

and slow DOC, DO13C, 

DO14C, PO4
3-

, O2 

Rau et al. (1989) 

MoBidiC 
5° × 3 zonally  

averaged basins 
19 

ALK, DIC, DI13C, 14C, DOC, 

DO13C, PO4
3-

, O2 
Mook (1986) 

PISCES 

2° × 2°  

(mean with enhanced 

meridional resolution  

at the equator) 

30 

CaCO3, CO3
2-, DIC, 13C (in 

the 3 dissolved and 7 

particulate carbon pools), 

DOC, nanophytoplankon, 

diatoms, mesozooplankton, 

microzooplankton, 2 detrital 

classes, PO4
3-

, NO3, H4SiO4, 

Fe 

Laws et al. (1995) 

Bern3D+C 36 cells × 36 cells 32 
ALK, DIC, 13C, 14C, PO4

3-
, 

DOP3, O2, SiO2, Fe 
Freeman and Hayes (1992) 

UVic 1.8° × 3.6° 19 

ALK, DIC, 13C (in the 5 

carbon pools), phytoplankton 

(nitrogen fixers and other 

phytoplankton), zooplankton, 

detritus, PO4
3-

, NO3, O2 

Popp et al. (1989) 
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Table 1 (continued) 

Model Horizontal resolution Levels Tracers 
αPOC←aq 

parameterisation 

iLOVECLIM 3° × 3° 20 

ALK, CaCO3, DIC, ∆14C, 

δ13C, DOC, slow DOC, POC, 

phytoplankton, zooplankton, 

PO4
3-

, NO3, O2 

Freeman and  

Hayes (1992) 

CESM 
3° × 3° (development) 

1° × 1° (application) 
60 

ALK, CaCO3, DIC, abiotic 

14C (in the 7 carbon pools), 

biotic 14C (in the 7 carbon 

pools), 13C (in the 7 carbon 

pools), DOC, diazatrophs, 

diatoms, small phytoplankton, 

zooplankton, H4SiO4 

Rau et al. (1989), 

Laws et al. (1995), 

Keller and Morel (1999) 

CSIRO  

Mk3L-COAL 
1.6° × 2.8° 21 

ALK, DIC, DI13C, 14C, 

general phytoplankton, 

diazotrophs, calcifiers, PO4
3-

, 

Fe, NO3, 15NO3, N2O, O2, 

abiotic O2 

Constant 

1 ALK = Alkalinity 

2 DOC = Dissolved Organic Carbon 

3 DOC = Dissolved Organic Phosphate 

 5 

Table 2: Overview of the fractionation factors used in the sensitivity experiments. 

Simulation αk αaq←g, αDIC←g αp 

std Standard1 Variable2 Variable3 

ki–fract-only Standard 1 1 

no-asgx-fract 1 1 Variable 

no-bio-fract Standard Variable 1 

1
 0.99919 

2 Calculated as per Eq. (6 – 7) 

3 With αPOC←aq calculated as per Eq. (9)  
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Figures 

 
Figure 1: Mean annual surface primary productivity: (a) observations estimated from surface chlorophyll concentrations using 

the Vertically Generalised Production Model (Behrenfeld and Falkowski, 1997), (b) the std simulation in the 1990s, and (c) 

simulated minus observed. Monthly mean primary productivity data were obtained from the Oregon State University Ocean 5 

Productivity website (http://www.science.oregonstate.edu/ocean.productivity). 
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Figure 2: Schematic overview of the 13C implementation in HadOCC. Blue boxes represent permanent carbon pools. Grey 

boxes represent temporary carbon pools. The orange box represents the prescribed atmospheric carbon pool. The dashed line 

represents fluxes of 13C/12C. Solid lines represent fluxes of 13C. Dot-dashed lines represent processes that occur below the 

lysocline (≈ 2500 m below sea level). The dotted line represents the reflux of detrital material from the seafloor to the surface 5 

layer. Red lines represent fractionation effects. Note that all simulations presented in this study were run without fractionation 

during calcium carbonate formation (αCaCO3 = 1.0). 
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Figure 3: Prescribed atmospheric δ13C values (solid) from the Law Dome and South Pole ice core records (Rubino et al., 2013) 

and prescribed atmospheric CO2 values (dashed) from the OCMIP-2 files (Orr et al., 2000). 
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Figure 4: Mean annual surface δ13CDIC values at the end of the sensitivity experiment spin-up simulations (years 9900 to 

10,000): (a) ki-fract-only, (b) no-bio-fract, and (c) no asgx-fract. 
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Figure 5: Depth profiles of globally averaged δ13CDIC at the end of the sensitivity experiment spin-up simulations (years 9900 

to 10,000). The std (black) and no-bio-fract (purple) simulations use the bottom axis, whilst the ki-fract-only (red) and no-

asgx-fract (blue) simulations use the top axis. 
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Figure 6: Zonally averaged mean annual surface δ13CDIC at the end of the sensitivity experiment spin-up simulations (years 

9900 to 10,000). The std (black) and no-bio-fract (purple) simulations use the left-hand axis, whilst the ki-fract-only (red) and 

no-asgx-fract (blue) simulations use the right-hand axis.  
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Figure 7: Mean annual surface δ13CDIC during the 1990s: (a) observations from GLODAPv2 (Key et al., 2015; Olsen et al., 2016), (b) the std 

simulation corrected for the mean surface bias (0.97 ‰), which is calculated as ∑(simulated-observed)/number of observations, (c) the std 

simulation, (d) std minus GLODAPv2, (e) the L95 simulation corrected for the mean surface bias (1.13 ‰), (f) the L95 simulation, (g) L95 minus 

GLODAPv2, (h) the L97 simulation corrected for the mean surface bias (1.15 ‰), (i) the L97 simulation, and (j) L97 minus GLODAPv2. 5 
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Figure 8: Zonally averaged mean annual mixed layer δ13CPOC during the 1990s: observations (Goericke and Fry, 1994; red), 

the std simulation (black), the L95 simulation (grey), and the L97 simulation (blue).   
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Figure 9: Depth profiles of δ13CDIC during the 1990s: (a) Atlantic Ocean, (b) Pacific Ocean, and (c) Indian Ocean. The δ13CDIC 

values in the std (black), L95 (grey) and L97 (blue) simulations are compared to observations (red). Solid lines are used for the 

global dataset, with observations from the gridded climatology produced by Eide et al. (2017). The simulated values have also 

been sub-sampled at the locations where there is a corresponding observation in the GLODAPv2 dataset (Key et al., 2015; 5 

Olsen et al., 2016; dashed). The red shading shows the estimated uncertainty in δ13CDIC observations due to unresolved inter-

calibration between different laboratories (±0.2 ‰; Schmittner et al., 2013; Eide et al., 2017). 
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Figure 10: Zonal mean δ13CDIC during the 1990s in the Atlantic Ocean (left), Pacific Ocean (centre) and Indian Ocean (right): 

(a – c) gridded observations (Eide et al., 2017), (d – f) the std simulation, (g – i) the L95 simulation, and (j – l) the L97 

simulation. 5 
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Figure 11: Mean annual isotopic fractionation during photosynthesis (αp) in the surface ocean at the end of the spin-up 

simulations (years 9900 to 10,000): (a) the std simulation, (b) the L95 simulation, and (c) the L97 simulation.  
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Appendices  

Appendix A: Virtual fluxes 

The standard equation for calculating the virtual flux to account for the dilution or concentration effect of surface freshwater 

fluxes is:  

𝑑 𝐶12

𝑑𝑡
= 𝐶12 ∙

(𝐸−𝑃)

𝑑𝑧
            (A1) 5 

where E is evaporation, P is precipitation, and dz is layer depth. 

As we carry 13C as a ratio (13C/12C), virtual fluxes are not required: 

𝑑(
𝐶13

𝐶12 )

𝑑𝑡
=

𝐶 ∙ 
𝑑13𝐶

𝑑𝑡
− 𝐶 ∙ 

𝑑12𝐶

𝑑𝑡
1312

( 𝐶12 )
2            (A2) 

𝑑(
𝐶13

𝐶12 )

𝑑𝑡
=

1

𝐶12 ∙ [ 𝐶13 ∙
(𝐸−𝑃)

𝑑𝑧
] −

𝐶13

( 𝐶12 )
2 ∙ [ 𝐶12 ∙

(𝐸−𝑃)

𝑑𝑧
]        (A3) 

𝑑(
𝐶13

𝐶12 )

𝑑𝑡
= 0             (A4) 10 

Appendix B: Air-sea gas exchange equations 

The standard equation for calculating the change in DI13C due to air-sea gas exchange is: 

𝑑 𝐶13

𝑑𝑡
= 𝛼𝑘  ∙  𝛼𝑎𝑞←𝑔 ∙ 𝑃𝑉 ∙ (𝐶𝑠𝑎𝑡 ∙

𝐴13

𝐴12 −
𝐶𝑠𝑢𝑟𝑓∙

𝐶13

𝐶12

𝛼𝐷𝐼𝐶←𝑔
 )        (B1) 

where PV is the piston velocity (Eq. (3)), Csat is the saturation concentration of atmospheric CO2 (in mol m-3), Csurf is the 

surface aqueous concentration of CO2 (in mol m-3), αk is the constant kinetic fractionation factor, αaq←g is the temperature-15 

dependent fractionation during gas dissolution (Eq. (6)), αDIC←g is the is the temperature-dependent fractionation between 

aqueous CO2 and DIC (Eq. (7)), and 13A/12A and 13C/12C are the 13C/12C ratios of the atmosphere and DIC, respectively. 

The equation for calculating the change in DI13C/ DI12C due to air-sea gas exchange is: 

𝑑(
𝐶13

𝐶12 )

𝑑𝑡
=

𝐶 ∙ 
𝑑13𝐶

𝑑𝑡
− 𝐶 ∙ 

𝑑12𝐶

𝑑𝑡
1312

( 𝐶12 )
2            (B2) 

𝑑(
𝐶13

𝐶12 )

𝑑𝑡
=

1

𝐶12 ∙ [𝛼𝑘  ∙  𝛼𝑎𝑞←𝑔 ∙ 𝑃𝑉 ∙ (𝐶𝑠𝑎𝑡 ∙
𝐴13

𝐴12 −
𝐶𝑠𝑢𝑟𝑓∙

𝐶13

𝐶12

𝛼𝐷𝐼𝐶←𝑔
 )] −

𝐶13

( 𝐶12 )
2 ∙ [𝑃𝑉 ∙ (𝐶𝑠𝑎𝑡 − 𝐶𝑠𝑢𝑟𝑓) ]   (B3) 20 

https://doi.org/10.5194/gmd-2019-250
Preprint. Discussion started: 7 January 2020
c© Author(s) 2020. CC BY 4.0 License.



 

41 

 

 

𝑑(
𝐶13

𝐶12 )

𝑑𝑡
=

1

𝐶12  ∙  𝑃𝑉 ∙  [𝛼𝑘  ∙  𝛼𝑎𝑞←𝑔 ∙ (𝐶𝑠𝑎𝑡 ∙
𝐴13

𝐴12 −
𝐶𝑠𝑢𝑟𝑓∙

𝐶13

𝐶12

𝛼𝐷𝐼𝐶←𝑔
) − (

𝐶13

𝐶12  ∙ [𝐶𝑠𝑎𝑡 − 𝐶𝑠𝑢𝑟𝑓])]     (B4) 

Appendix C: Biological equations 

 For consistency with the standard biological tracers, the 13C contents of phytoplankton (13P), zooplankton (13Z) and 

detritus (13D) are carried in mmol-N m-3, with the carbon concentrations and fluxes calculated using fixed stoichiometric ratios. 

The DI13C/DI12C values are therefore converted from a ratio in model units (Eq. (1)) to normalised DI13C concentrations before 5 

entering the soft tissue pump. The conversion is reversed at the end of each timestep. 

C.1 Phytoplankton (P) 

The standard equation for calculating the change in phytoplankton (12P) is: 

𝑑𝑃

𝑑𝑡
= 𝑅𝑃 − 𝐺𝑝 − 𝑚𝑃 − 𝜂𝑃           (C1) 

where RP is the specific growth rate of phytoplankton, Gp represents grazing by zooplankton, mP represents phytoplankton 10 

mortality due to overpopulation, and ηP represents phytoplankton respiration. 

The equation for calculating the change in 13P is: 

𝑑13𝑃

𝑑𝑡
= 𝑅𝑃 ×  

𝐶13

𝐶 
12  ×  𝛼𝑝  − 𝐺𝑝 ×  

𝑃13

𝑃 
12  − 𝑚𝑃 ×  

𝑃13

𝑃 
12 − 𝑛𝑃 ×  

𝑃13

𝑃 
12        (C2) 

where αp is the isotopic fractionation that occurs during photosynthesis (Eq. (8)), 13C/12C is the 13C/12C ratio of DIC, and 13P/12P 

is the 13C/12C ratio of phytoplankton. 15 

The 13P tracer is updated using the forward Euler method:  

𝑃13
(𝑡+∆𝑡) = 𝑃13

(𝑡) + ∆𝑡 × ( 𝑅𝑃(𝑡)
×  

𝐶13

𝐶 
12

(𝑡)
×  𝛼𝑝(𝑡)

 − 𝐺𝑝(𝑡)
×   

𝑃13

𝑃 
12

(𝑡)
 − 𝑚𝑃(𝑡)

×  
𝑃13

𝑃 
12

(𝑡)
− 𝑛𝑃(𝑡)

×  
𝑃13

𝑃 
12

(𝑡)
)  (C3) 

C.2 Zooplankton (Z) 

The standard equation for calculating the change in zooplankton (12Z) is: 

𝑑𝑍

𝑑𝑡
= 𝛽𝑃 × 𝐺𝑃 + 𝛽𝐷 × 𝐺𝐷 − 𝑚𝑍          (C4) 20 

where βP and βD are the assimilation efficiencies associated with zooplankton grazing on phytoplankton (GP) and detritus (GD), 

respectively, and mZ represents zooplankton mortality due to predation and natural causes. 

The equation for calculating the change in 13Z is: 

𝑑13𝑍

𝑑𝑡
= 𝛽𝑃 × 𝐺𝑃 ×  

𝑃13

𝑃 
12 + 𝛽𝐷 × 𝐺𝐷 × 

𝐷13

𝐷 
12 − 𝑚𝑍 × 

𝑍13

𝑍 
12          (C5) 

where 13P/12P, 13D/12D and 13Z/12Z are the isotopic ratios of phytoplankton, detritus and zooplankton, respectively. 25 
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The 13Z tracer is updated using the forward Euler method:  

𝑍13
(𝑡+∆𝑡) = 𝑍13

(𝑡) + ∆𝑡 × ( 𝛽𝑃(𝑡)
× 𝐺𝑃(𝑡) ×  

𝑃13

𝑃 
12

(𝑡)
+ 𝛽𝐷(𝑡) × 𝐺𝐷(𝑡) ×  

𝐷13

𝐷 
12

(𝑡)
− 𝑚𝑍(𝑡) ×

𝑍13

 𝑍 
12

(𝑡)
)   (C6) 

C.3 Dissolved inorganic carbon (DIC, C) 

The standard equation for calculating the change in DI12C is: 

𝑑𝐶

𝑑𝑡
= −𝑅𝑃 + 𝜆𝐷 + (1 − 𝛽𝑃) × 𝐺𝑝 + (1 − 𝛽𝐷) × 𝐺𝐷 + 𝑚𝑍 + 𝑚𝑃 + 𝜂𝑃       (C7) 5 

where RP is the specific growth rate of phytoplankton, λD is detrital remineralisation, which is specified at a constant rate (0.1 

day-1 in the uppermost 250 m of the ocean and 0.02 day-1 at all other depths), βP and βD are the assimilation efficiencies 

associated with zooplankton grazing on phytoplankton (GP) and detritus (GD), respectively, mZ represents zooplankton 

mortality due to predation and natural causes, mP represents phytoplankton mortality due to overpopulation, and ηP represents 

phytoplankton respiration.  10 

The equation for calculating the change in DI13C is: 

𝑑13𝐶

𝑑𝑡
= −𝑅𝑃 × 

𝐶13

𝐶 
12  ×  𝛼𝑝  + 𝜆𝐷 ×  

𝐷13

𝐷12 + (1 − 𝛽𝑃) × 𝐺𝑝 ×  
𝑃13

𝑃12 + (1 − 𝛽𝐷) × 𝐺𝐷 ×  
𝐷13

𝐷12 +  𝑚𝑍 × 
𝑍13

𝑍 
12 + 𝑚𝑃 × 

𝑃13

𝑃 
12 + 𝜂𝑃 ×  

𝑃13

𝑃 
12

             (C8) 

where αp is the isotopic fractionation that occurs during photosynthesis (Eq. (8)) and 13C/12C, 13D/12D, 13P/12P and 13Z/12Z are 

the isotopic ratios of DIC, detritus, phytoplankton and zooplankton, respectively. 15 

The DI13C tracer is updated using the forward Euler method:  

𝐶13
(𝑡+∆𝑡) = 𝐶13

(𝑡) + ∆𝑡 × (−𝑅𝑃(𝑡)
×  

𝐶13

𝐶 
12

(𝑡)
×  𝛼𝑝(𝑡)

 + 𝜆𝐷(𝑡)
× 

𝐷13

𝐷12
(𝑡)

+ (1 − 𝛽𝑃(𝑡)
) × 𝐺𝑝(𝑡)

×  
𝑃13

𝑃12
(𝑡)

+ (1 − 𝛽𝐷(𝑡)
) ×

𝐺𝐷(𝑡)
×  

𝐷13

𝐷12
(𝑡)

+  𝑚𝑍(𝑡)
×  

𝑍13

𝑍 
12

(𝑡)
+ 𝑚𝑃(𝑡)

×  
𝑃13

𝑃 
12

(𝑡)
+ 𝜂𝑃(𝑡)

×  
𝑃13

𝑃 
12

(𝑡)
)     (C9) 

C.4 Detritus (D) 

Unlike the other biological tracers, the standard detritus tracer (12D) is updated using a semi-implicit scheme:   20 

𝐷(𝑡+∆𝑡,𝑘)−𝐷(𝑡,𝑘)

∆𝑡
=

𝑑𝐷

𝑑𝑡 𝑏𝑖𝑜(𝑡,𝑘)
+

𝑑𝐷

𝑑𝑡 𝑠𝑖𝑛𝑘_𝑖𝑛(𝑡+∆𝑡,𝑘−1)
−

𝑑𝐷

𝑑𝑡 𝑠𝑖𝑛𝑘_𝑜𝑢𝑡(𝑡+∆𝑡,𝑘)
      (C10) 

𝐷(𝑡+∆𝑡,𝑘) − 𝐷(𝑡,𝑘) = ∆𝑡 × 𝐷𝑏𝑖𝑜(𝑡,𝑘) + ∆𝑡 ×
𝛾

𝑑𝑧/100
× 𝐷(𝑡+∆𝑡,𝑘−1) − ∆𝑡 ×

𝛾

𝑑𝑧/100
× 𝐷(𝑡+∆𝑡,𝑘)    (C11) 

𝐷(𝑡+∆𝑡,𝑘) + ∆𝑡 ×
𝛾

𝑑𝑧/100
× 𝐷(𝑡+∆𝑡,𝑘) = 𝐷(𝑡,𝑘) + ∆𝑡 × 𝐷𝑏𝑖𝑜(𝑡,𝑘) + ∆𝑡 ×

𝛾

𝑑𝑧/100
× 𝐷(𝑡+∆𝑡,𝑘−1)    (C12) 

𝐷(𝑡+∆𝑡,𝑘) × (1 + ∆𝑡 ×
𝛾

𝑑𝑧/100
) = 𝐷(𝑡,𝑘) + ∆𝑡 × 𝐷𝑏𝑖𝑜(𝑡,𝑘) + ∆𝑡 ×

𝛾

𝑑𝑧/100
× 𝐷(𝑡+∆𝑡,𝑘−1)    (C13) 
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𝐷(𝑡+∆𝑡,𝑘) =
𝐷(𝑡,𝑘)+∆𝑡×𝐷𝑏𝑖𝑜(𝑡,𝑘)+∆𝑡×

𝛾

𝑑𝑧/100
×𝐷(𝑡+∆𝑡,𝑘−1)

1+∆𝑡×
𝛾

𝑑𝑧/100

        (C14) 

𝐷(𝑡+∆𝑡,𝑘) = 𝐷(𝑡,𝑘) +
𝑑𝐷

𝑑𝑡 (𝑡,𝑘)
           (C15) 

𝑑𝐷

𝑑𝑡 (𝑡,𝑘)
= 𝐷(𝑡+∆𝑡,𝑘) − 𝐷(𝑡,𝑘)           (C16) 

𝑑𝐷

𝑑𝑡 (𝑡,𝑘)
=

𝐷(𝑡,𝑘)+∆𝑡×𝐷𝑏𝑖𝑜(𝑡,𝑘)+∆𝑡×
𝛾

𝑑𝑧/100
×𝐷(𝑡+∆𝑡,𝑘−1)

1+∆𝑡×
𝛾

𝑑𝑧/100

− 𝐷(𝑡,𝑘)       (C17) 

where t is the current timestep, k is the model level, dD/dtbio is the change in detritus due to biological effects (Eq. (C19)),  5 

γ is the sinking rate, which is parameterised at 10 m day-1, dz is the depth of the layer (in cm), and D is the detritus concentration. 

Following the same principles, the 13D tracer is updated using: 

𝑑 𝐷13

𝑑𝑡 (𝑡,𝑘)
=

𝐷13
(𝑡,𝑘)+∆𝑡× 𝐷13

𝑏𝑖𝑜(𝑡,𝑘)+∆𝑡×
𝛾

𝑑𝑧/100
× 𝐷13

(𝑡+∆𝑡,𝑘−1)

1+∆𝑡×
𝛾

𝑑𝑧/100

− 𝐷13
(𝑡,𝑘)      (C18) 

C.4.1 Biological effects 

The standard equation for calculating the change in detritus (12D) due to biology is: 10 

𝑑𝐷

𝑑𝑡 𝑏𝑖𝑜
= 𝑚𝑍 + 𝑚𝑃 − 𝜆𝐷 − 𝐺𝐷 − (1 − 𝛽𝑃) × 𝐺𝑝 − (1 − 𝛽𝐷) × 𝐺𝐷      (C19) 

where mZ represents zooplankton mortality due to predation and natural causes, mP represents phytoplankton mortality due to 

overpopulation, λD is detrital remineralisation, which is specified at a constant rate (0.1 day-1 in the uppermost 250 m of the 

ocean and 0.02 day-1 at all other depths), and βP and βD are the assimilation efficiencies associated with zooplankton grazing 

on phytoplankton (GP) and detritus (GD), respectively. 15 

The equation for calculating the change in 13D due to biology is: 

𝑑 𝐷13

𝑑𝑡 𝑏𝑖𝑜
= 𝑚𝑍 ×

𝑍13

𝑍 
12 + 𝑚𝑃 ×

𝑃13

𝑃 
12 − 𝜆𝐷 ×

𝐷13

𝐷 
12 − 𝐺𝐷 ×

𝐷13

𝐷 
12 − (1 − 𝛽𝑃) × 𝐺𝑝 ×

𝑃13

𝑃 
12 − (1 − 𝛽𝐷) × 𝐺𝐷 ×

𝐷13

𝐷 
12   (C20) 

where 13Z/12Z, 13P/12P and 13D/12D are the isotopic ratios of zooplankton, phytoplankton, and detritus, respectively.  

C.4.2 Reflux 

The small amount of detritus that reaches the ocean floor is immediately refluxed back to the surface layer to conserve nitrogen 20 

and carbon. 

𝑑𝐷

𝑑𝑡 𝑠𝑖𝑛𝑘_𝑖𝑛(𝑘=1)
=

𝛾

𝑑𝑧/100
 ∙ 𝐷(𝑘=𝐾𝑀𝑇)          (C21) 

where k is the model level, γ is the sinking rate, which is parameterised at 10 m day-1, dz is the depth of the layer (in cm), D is 

the detritus concentration, and KMT is the maximum depth of the ocean. The same equation applies for 13D. 
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